• Login
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage StatisticsView Google Analytics Statistics

    Use of collaborative filtering for targeted advertising

    Thumbnail
    View/Open
    200611038.pdf (485.7Kb)
    Date
    2008
    Author
    Upadhyay, Ankur
    Metadata
    Show full item record
    Abstract
    Often in our daily life, we come across situations when we have many options available and are expected to choose one of them. May it be a bookstore, CD shop or a shopping store, even on the internet, the availability of so many genres and a wide variety among every genre poses difficulty in selection of the item. Recommender systems have been providing suggestions but they are not able to provide us options when we are walking through the aisles of a bookstore or a CD shop. Ideally, recommendations should be made available to the customer without giving explicit command. To provide ease while walking down for shopping in selecting the items based on the item chosen by the customer, the topic focuses on deriving a general model for recommending a product that might save customers money and time along with fulfilling the need. Selection of the product to be advertised by the model is a dynamic decision as it depends on the products kept in the basket. Bayesian approach is used to find the dependencies between items which implements Collaborative filtering and provides real time recommendations on the basis of preferences of earlier customers. The model uses Clustering to limit the complexity of the model that will be built and to aggregate similar items, by grouping customers those who bought items of similar genre. The assumption made is that the selection of the customer is made known to the model in order to process it, to give recommendations; and the recommendations are made known to customers using suitable advertising mechanism.
    URI
    http://drsr.daiict.ac.in/handle/123456789/206
    Collections
    • M Tech Dissertations [923]

    Resource Centre copyright © 2006-2017 
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     


    Resource Centre copyright © 2006-2017 
    Contact Us | Send Feedback
    Theme by 
    Atmire NV