• Login
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage StatisticsView Google Analytics Statistics

    Particle swarm optimization based synthesis of analog circuits using neural network performance macromodels

    Thumbnail
    View/Open
    200711002.pdf (970.8Kb)
    Date
    2009
    Author
    Saxena, Neha
    Metadata
    Show full item record
    Abstract
    This thesis presents an efficient an fast synthesis procedure for an analog circuit. The proposed synthesis procedure used artificial neural network (ANN) models in combination with particle swarm optimizer. ANN has been used to develop macro-models for SPICE simulated data of analog circuit which takes transistor sizes as input and produced circuit specification as output in negligible time. The particle swarm optimizer explore the specfied design space and generates transistor sizes as potential solutions. Several synthesis results are presented which show good accuracy with respect to SPICE simulations. Since the proposed procedure does not require an SPICE simulation in the synthesis loop, it substantially reduces the design time in circuit design optimization.
    URI
    http://drsr.daiict.ac.in/handle/123456789/273
    Collections
    • M Tech Dissertations [820]

    Resource Centre copyright © 2006-2017 
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     


    Resource Centre copyright © 2006-2017 
    Contact Us | Send Feedback
    Theme by 
    Atmire NV