• Login
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage StatisticsView Google Analytics Statistics

    Estimating depth in a single image by learning through neural networks

    Thumbnail
    View/Open
    201211018.pdf (1.662Mb)
    Date
    2014
    Author
    Kosti, Ronak
    Metadata
    Show full item record
    Abstract
    Depth information extraction from images is a vibrant problem in computer vision. Features from the image like: haze, texture gradient and texture variation could give depth-related knowledge. Typically, input features are provided to the machine through images or video sequences. There are methods which are able to find depth through multiple images. These methods rely on correlated information present in those images. Such correlation is difficult with single images and hence to extract depth from a single image, help is taken from different priors. Image geometry, relative motion of different objects, defocus cues are a few of those priors. Parameters that infer depth are learned through training. Neural Networks, that are good learners, are employed to acquire these parameters through supervised learning. First approach in this thesis models depth estimation task as a classification problem. The depth range is initially divided to binary levels, viz., near and far. A class of Neural Networks called Multilayer Perceptrons (MLP) are used as classifiers to classify depths given image features. In the second approach, Neural Networks are employed to learn the unknown relationship between image features and their corresponding depth. Once the parameters are learned, they are used to estimate the depth for a test image. Features are extracted form the images. The features along with their corresponding depths are trained with different configurations of the Neural Network. The results are compared with true depth maps. Reasoning for the quality of outcomes is then summarily given.
    URI
    http://drsr.daiict.ac.in/handle/123456789/490
    Collections
    • M Tech Dissertations [923]

    Resource Centre copyright © 2006-2017 
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     


    Resource Centre copyright © 2006-2017 
    Contact Us | Send Feedback
    Theme by 
    Atmire NV