• Login
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage StatisticsView Google Analytics Statistics

    Automatic speech recognition using deep neural networks

    Thumbnail
    View/Open
    201411028.pdf (2.181Mb)
    Date
    2016
    Author
    Sharma, Manisha
    Metadata
    Show full item record
    Abstract
    Automatic Speech Recognition (ASR) is an important field of research because ofits widespread use in various fields such as military, health services, day-to-dayactivities, etc. ASR task was earlier done using GMM-HMM model, where a setof Gaussian Mixture Models (GMMs) were used to statistically model the acousticmodels of speech signals and HMMs (Hidden Markov Models) were used toprovide a framework for constructing models for sequential structure of speechspectral vectors. Mel Frequency Cepstral Coefficients (MFCCs) or Mel-filterbankfeatures were used for feature extraction techniques. However, the GMM-HMMmodel found it quite challenging to model a wide range of speakers, speakingstyles, accents, background noises, etc. Recently, Deep Neural Networks (DNNs)have provided an alternative for GMMs in generating acoustic models becausethe hybrid DNN-HMM system gives significant improvements over state-of-theartGMM-HMM systems on ASR tasks. Different variants of DNNs have beenproposed till date which further reduce the error rates. One such variant is usinggeneralized maxout networks using p??norm for generalization which takes thep??norm over groups of inputs. Deep networks have also been used to extractfeatures from speech signals. One such method, using subband autoencoders(SBAE), has been proposed in this work. This is used in combination with thefilterbank features for ASR tasks. The performance of the combined system wascompared with the system trained with filterbank only and our SBAE features,with p??norm maxout network at p equal to 2 are found to perform best.
    URI
    http://drsr.daiict.ac.in/handle/123456789/614
    Collections
    • M Tech Dissertations [923]

    Resource Centre copyright © 2006-2017 
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     


    Resource Centre copyright © 2006-2017 
    Contact Us | Send Feedback
    Theme by 
    Atmire NV